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A B S T R A C T

The process of identifying and bringing to the fore people’s unsafe behaviour is a core function of implementing
a behaviour-based safety (BBS) program in construction. This can be a labour-intensive and challenging process
but is needed to enable people to reflect and learn about how their unsafe actions can jeopardise not only their
safety but that of their co-workers. With advances being made in computer vision, the capability exists to au-
tomatically capture and identify unsafe behaviour and hazards in real-time from two-dimensional (2D) digital
images/videos. The corollary developments in computer vision have stimulated a wealth of research in con-
struction to examine its potential application to practice. Hindering the application of computer vision in
construction has been its inability to accurately, and generalise the detection of objects. To address this short-
coming, developments in deep learning have provided computer vision with the ability to improve the accuracy,
reliability and ability to generalise object detection and therefore its usage in construction. In this paper we
review the developments of computer vision studies that have been used to identify unsafe behaviour from 2D
images that arises on construction sites. Then, in light of advances made with deep learning, we examine and
discuss its integration with computer vision to support BBS. We also suggest that future computer-vision research
should aim to support BBS by being able to: (1) observe and record unsafe behaviour; (2) understand why people
act unsafe behaviour; (3) learn from unsafe behaviour; and (4) predict unsafe behaviour.

1. Introduction

Within construction, research has repeatedly demonstrated that
people’s unsafe behaviour is a major contributor to accidents
[97,54,56]. An array of theoretical models and metaphors have been
propagated over the last century to explain people’s unsafe acts and
behaviours [83,32]. An notable theory is behaviour-based safety
(BBS), which has been demonstrated to be an effective tool that can
contribute to improving an organisation’s safety performance
[48,49,15,29,53,57].

A BBS approach can be used to observe and identify people’s unsafe
actions. Then, feedback can be provided directly to those who have
committed an unsafe act with the aim of modifying their future beha-
viour [9,3,95,23]. It should be acknowledged, however, that BBS ap-
proaches have been widely criticised there is a proclivity for BBS to
neglect the root cause of unsafe behaviour, ignore issues regarding
values and attitudes, and can also hide management commitment and

inadequacies [35–37,67,72]. In addition, BBS has been criticised for
workers not reporting unsafe behaviours, near misses, and incidents,
especially if it is related to penalties and punitive measures. Further-
more, BBS approaches may not be sustainable and in some cases fall
back to the baseline when “reinforcers” are removed, explicitly in-
dicating that the modified behaviour was controlled [13]. Regardless of
the criticisms of BBS we consider it to be an invaluable approach that
can be utilised to inspire people to be self-accountable and take re-
sponsibility for their unsafe actions through a process of reflection and
learning [57].

To aid this process of reflection and learning, BBS comprises three
phases: (1) observation; (2) feedback; and (3) training. Observation is
central to monitoring and managing safety-behaviour on construction
sites. Then, based on individual observable risky behaviour, feedback
and training are implemented. The drawbacks of manual safety ob-
servation reporting (SOR) have been widely acknowledged [29,30]. For
example, Oswald et al. [72] identified the problems with SOR that are
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reliant on the use computer or handwritten cards, for subsequent action
by the health and safety team to include (p.35):

• significantly increased administration to deliver predictable data;
• an unwelcome focus on the number rather than content of the re-
ports;
• their use as a tool to ascribe individual or organizational blame; and
• the perception that reports are censored before they reach the health
and safety team, which erodes trust between the workforce and
management.

To overcome the shortcomings associated with SOR, technological
developments aided by computer vision have been identified as a robust
approach to automatically recognise and capture the unsafe acts com-
mitted by individuals during construction [29,30,73,4,93,14,16–19,
21,80]. As a result, a rich collection of 2D images containing the actions
that led to the unsafe event being performed can be obtained.

The advent of deep learning, in particular, Convolutional Neural
Network (CNN), provide opportunities for computer vision-based data
analysis and to overcome the problems associated with the manual
observation and recording of unsafe acts. Despite the increasing at-
tention being afforded to computer vision-based unsafe behaviour
monitoring and identification in construction, there has been no com-
prehensive review that has been undertaken. Such a review is needed to
track developments and provide an avenue for ensuring that future
research not only has a robust theoretical underpinning, but is also
relevant to improving the utilisation of BBS in practice. Notably, two-
dimensional (2D) digital images/videos are widely used in construc-
tion. As a consequence, our research focuses on the use of 2D images
that can be used to support the implementation of BBS. We commence
our paper by reviewing existing CNN-based computer vision ap-
proaches. Then, a review of computer vision-based studies that have
focused on identifying unsafe behaviour from 2D images are examined.
Next research challenges and proposed solutions for implementing
computer vision-based using deep learning within the context of BBS is
presented.

2. Understanding computer vision and deep learning

Computer vision is an interdisciplinary scientific field that deals
with how computational models can be made to gain high-level un-
derstanding from digital images or videos in order to automate tasks
that the human visual system can do [11,39,41,51,77,79]. Develop-
ments in the field of machine learning have enabled computers to better
understand what they see and as a result has bolstered developments in
the area of computer vision. However, conventional machine learning
approaches are limited in their ability to process natural data in their
raw form [52]. This is due to there being a need to design a feature
descriptor using engineering and expert experience [52]. To simplify
the process of detection and pattern recognition, deep learning-based
representation methods have been developed, which can automatically
extract complex features end to end by learning from multiple data
[52].

By combining deep learning methods (e.g. neural networks) with
images that have been obtained from using computer vision, features
that are not designed by human engineers can be automatically ex-
tracted and used to learn from training data. In comparison with
Artificial Neural Networks (ANN), as denoted in Fig. 1, deep learning
models are comprised of multiple processing layers based on neural
networks that learn from representations of data with numerous levels
of abstraction [52].

The most widely used deep learning method is the CNN, which
consists of three main types of neural layers: (1) convolutional; (2)
pooling; and (3) fully connected. The typical architecture of a CNN for
detecting objects from images can be seen in Fig. 2. Within the domain
of computer vision, CNN-based deep learning approaches have been

widely adapted for an array of tasks such as image classification, object
detection, object semantic segmentation, and pose estimation. We ex-
amine each of these tasks and deep learning-related technologies, as
they form the underlying basis for applying computers to detect unsafe
behaviour in construction. The structure of our review presented in this
paper can be seen in Fig. 3.

2.1. State-of-the art applications in computer vision

2.1.1. Image classification
Image classification is an important task in computer vision, as it is

used to identify an object that appears in an image. This task consists of
labelling input images with a probability for the presence of a particular
visual object class, as denoted in Fig. 4. Notably, each image in Fig. 4
has one ground truth label, followed by the top five estimates of their
probability of occurrence.

A well-known classification network is the AlexNet CNN, which was
able to achieve a top-5 error rate1 of 15.3% outperforming the feature
detection Scale-invariant feature transform (SIFT) algorithm with an
accuracy of 26.2%. The upshot in this instance being that the CNN
became a prominent classification model in computer vision with its
detection accuracy being consistently improved over time with larger
training sets from image classifications performed at ImageNet chal-
lenges2 (Table 1). The Visual Geometry Group (VGG-16), for example,
model proposed by Simonyan and Zisserman [81] had sixteen con-
volutional layers, multiple max-pooling layers and three fully-con-
nected layers and achieved 7.3% top-5 error rate. Similarly, a deeper
network called GoogLeNet (Inception V1) with 22 layers was developed
by Szegedy et al. [84] and was able to achieve a 6.7% top-5 error rate.

2.1.2. Object detection
Object detection is fundamental to computer vision, as its aim is to

identify an object’s semantic features and locations contained within
images. The work of Krizhevsky et al. [50] laid the foundation for the
development of CNN-based object detection within the field of com-
puter science. As a consequence of this pioneering work, developments
with CNNs have been abounding. For example, Girshick [27] developed
a Region-based convolutional neural network (R-CNN) model that was
combined with a selective search, which was able to achieve a 31.4%
mean Average Precision (mAP)3 score using the 2013 ImageNet data-
base. Likewise, Ren et al. [71] integrated a Faster R-CNN with a Region
Proposal Network (RPN) to detect objects, which was identified as
being the state-of-the-art for its accuracy on the PASCAL Visual Object
Classes (VOC)4 2007, 2012 and MS COCO (Common Objects in Context)
database5 (Table 2).

Developments in object detection comprise two stages: (1) the
generation of a set of candidate regions that contain objects such as a
Selective Search [87], EdgeBoxes [96], DeepMask [76], and RPN [71];
and (2) the application of a CNN to classify obtained regions (i.e., the
first stage) into different foregrounds or backgrounds. Object detection
approaches that have been developed for their speed of detection at the
expense of accuracy include You Only Look Once (Fig. 5) (YOLO), You
Only Look Once 9000 (YOLO 9000) [70] and Single Shot Multibox

1 Top-5 error rate is the fraction of test images for which the correct label is
not among the five labels considered most probable by the mode.

2 ImageNet Large Scale Visual Recognition Challenge (ILSVRC) evaluates al-
gorithms for object detection and image classification at large scale.

3 The mAP for a set of queries is the mean of the average precision scores for
each query. The more details can be referred: https://en.wikipedia.org/wiki/
Evaluation_measures_(information_retrieval)#Mean_average_precision.

4 Pascal VOC data is a well-known set of standardized images for object class
recognition. (https://github.com/shelhamer/fcn.berkeleyvision.org/tree/
master/data/pascal).

5 COCO is a large-scale object detection, segmentation, and captioning dataset
(arXiv:1405.0312).
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Detector (SSD). An overview of CNN-based object detections on the
PASCAL VOC and MS COCO databases are presented in Table 2.

2.1.3. Object segmentation
Semantic segmentation is typically used to locate objects and

boundaries (i.e., lines, curves) from images to classify each pixel into a
fixed set of categories without differentiating an object’s instance [82].
The task semantic segmentation process has been simplified with the
development of CNN models, which are capable of tacking the pixel-
level predictions with the pre-trained network on large-scale datasets.
In stark contrast to image classification and object detection, semantic
segmentation requires output masks that have a 2D spatial distribution.

For example, Fig. 6 presents an example where SegNet for object seg-
mentation is used.

Three CNN-based semantic segmentation methods have been de-
veloped: [26]: (1) region-based semantic segmentation; (2) FCN-based
semantic segmentation; (3) weakly-supervised segmentation. Table 3
presents prior works on the three different methods CNN-based object
semantic segmentation for the COCO database.

2.1.4. Human pose estimation
The goal of human pose estimation is to determine the location of

human joints from images (e.g. sequences and depth), or skeleton data
as provided using motion capturing hardware [43] (Fig. 7).

Fig. 1. Comparison between ANNs and deep learning architectures.
Source: Miotto et al. [63].

Fig. 2. The pipeline of the general CNN architecture.
Source: Guo [26].

Fig. 3. Review structure.
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Determining the pose estimation of a person can be an arduous and
challenging task, as consideration needs to be given to a number of
aspects such as the viewpoint, illumination, and prevailing contextual
backdrop, which can contain noise.

The emergence of CNNs has engendered considerable interest in
human pose estimation, which can be essentially categorised as
(Table 4): (1) Single-stage, which is based on a backbone network that
has been well-tuned for performing image classification tasks; and (2)
Multi-stage, which aims to refine the process of pose estimation.

2.2. Deep learning-related techniques

The development and application of a deep learning model to

address real-world problems needs to consider the techniques of
transfer learning and data augmentation to address issues associated
with accuracy and reliability.

2.2.1. Transfer learning
A huge number of images are required to establish a database re-

quired for training a CNN model. In some instances, however, it is
difficult to create such a database to examine specific tasks. When this
situation arises, the machine learning method of transfer learning is
adopted where a model developed for a task is reused as the starting
point for a model on a second task. Here pre-trained models are used as
the starting point on computer vision and natural language processing
tasks provide the compute and time resources needed to develop neural
network model. Several deep transfer learning methods have been de-
veloped, which include [40,85]: (1) instances-based; (2) mapping-
based; (3) network-based; and (4) adversarial-based.

2.2.2. Data augmentation
To obtain good performance (i.e., accuracy) on computer vision

with a small training database, data augmentation technique is required
to produce new data by using different approaches to processing and/or
combining (e.g., random rotation, crop or flips) together. The goal of
data augmentation is to avoid overfitting, which can improve a model’s
ability to generalise. Data augmentation techniques can be divided into
two types: (1) position (e.g., crop, resize, or horizontal flip); (2) color,
(e.g. brightness, contrast or saturation). The AlexNet, identified above,
employed two distinct forms of data augmentation: (1) generation of
image translations and horizontal reflections; and (2) alternation of
intensities of Red-Green-Blue (RGB) channels in training images [50].
Likewise, based on the AlexNet, Howard et al. [34] proposed an im-
proved data augmentation strategy that extended image crops with

Fig. 4. Example of image classification from AlexNet.
Source: Krizhevsky et al. [50].

Table 1
Prior work on the top-5 error rates for image classification on ImageNet chal-
lenges.

Model ImageNet
2012

ImageNet
2014

ImageNet
2015

ImageNet
2017

AlexNet 15.3% – – –
VGG-16 – 7.3% – –
Inception V1 – 6.7% – –
Inception V3 5.6% – – –
ResNet 3.58% – – –
ResNet-152 5.5
ResNet-200 4.8
Inception-v3 5.6
Inception-v4 5.0
Inception-ResNet-v2 4.9
Inception-ResNet 4.49% – – –
SE-ResNet-152 – – – 3.79
NASNet 3.8% – – –
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extra pixels and adding color manipulations to improve translation
invariance and color invariance.

3. Research method

Our initial review of the literature relied on the use of Google
Scholar’s search engine to identify key works in the area of computer
vision-base safety. We commenced our search by focusing on three of
three keywords, ‘computer vision’, ‘unsafe behaviour’, and ‘construc-
tion’ that had been published between 2009 and 2019. Our search in-
itially identified 107 papers. We manually examined each of these pa-
pers to determine their relevance to unsafe behaviour in construction
and thus dismissed papers that focused on issues such as work activity
recognition, and ergonomics monitoring. In sum, we found that there
had been a limited number of computer vision-based papers that had

sought to identify unsafe behaviour.

3.1. Definition of unsafe behaviour

Put simply, unsafe behaviour can be defined as dangerous acts that
often result in injuries. When actions are likely to result in a negative
outcome (i.e., injury) with high severity potential, we also view these as
being unsafe. In construction, it has been demonstrated that 88% of
accidents are caused by people’s unsafe behaviour [97]. An analysis of
9358 accidents cases that occurred within the United States construc-
tion industry between 2002 and 2011, for example, revealed that the
major three types of accidents were [8]: (1) falls from height (FFH)
(43.9%); (2) being struck by a falling object (25.7%); and (3) caught in/
between hazards (10.0%). Likewise, Williams et al. [90] analysis of
accidents in Nigeria resulted in the following types: (1) contact with

Table 2
CNN-based object detections on PASCAL VOC database and MS COCO database.

Model PASCAL VOC 2007 PASCAL VOC 2010 PASCAL VOC 2012 COCO 2015 COCO 2017

R-CNN [27] – 62.4% – – –
Fast R-CNN [28] 70.0% 68.8% 68.4% – –
Faster R-CNN [71] 78.8% – 75.9% – –
R-FCN [12] 82.0% – – 31.5% –
YOLO [68] 63.7% – 57.9% – –
SSD [55] 83.2% – 82.2% 31.2(AP) –
YOLOv2 [69] 78.6% – – 21.6(AP) –
YOLOv3 [70] 33.0
Mask R-CNN [33] – – – – 39.8%

Fig. 5. Examples of YOLO-based object detection.
Source: Redmon et al. [68].

Fig. 6. An example of using SegNet architecture for object segmentation.
Source: Badrinaryanan et al. [2].
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objects; (2) vehicle/machine related; (3) slips and trips; and (4) falls.
According to a series of statistics/reports and the extant literature

[61,62,8,29,54,24,25], the unsafe behaviour that have resulted in ac-
cidents is categorised: (1) failure of personal protect equipment (PPE);
(2) exposure to hazardous area; and (3) failure to follow safety proce-
dures.

4. Computer vision-based deep learning and unsafe behaviour

State-of-the-art CNNs (e.g., Faster R-CNN, SSD, Mask R-CNN, and
YOLOv3) together with deep neural networks for object detection, such
as the ZFNet, and ResNet, can be used to recognise people, plant and
equipment on construction sites (Fig. 8).

Table 3
Comparison of CNN-based on semantic segmentation methods.
Resource: http://cocodataset.org/#panoptic-leaderboard.

Panoptic Quality (PQ) Segmentation Quality (SQ) Recognition Quality (RQ) PQTh SQTh RQTh PQSt SQSt RQSt

Megvii (Face++) 0.532 0.832 0.629 0.622 0.855 0.725 0.395 0.797 0.485
Caribbean 0.468 0.805 0.571 0.543 0.818 0.659 0.355 0.785 0.438
PKU_360 0.463 0.796 0.561 0.586 0.837 0.696 0.276 0.736 0.356
ps 0.416 0.796 0.507 0.504 0.826 0.605 0.284 0.749 0.359
TeamPH 0.359 0.767 0.449 0.441 0.800 0.545 0.236 0.716 0.303
MMAP_seg 0.322 0.760 0.408 0.390 0.782 0.491 0.220 0.728 0.284
MPS-TU Eindhoven 0.272 0.719 0.359 0.296 0.716 0.394 0.234 0.723 0.306
LeChen 0.263 0.742 0.332 0.313 0.762 0.393 0.187 0.712 0.241
Artemis 0.168 0.716 0.220 0.168 0.724 0.220 0.167 0.704 0.219
grasshopyx 0.026 0.284 0.034 0.000 0.000 0.000 0.066 0.713 0.084
microljy 0.021 0.312 0.026 0.033 0.410 0.041 0.003 0.165 0.004

Note: PQ(SQ/RQ)Th is PQ (SQ/RQ) for things categories only, and PQ (SQ/RQ)St is PQ (SQ/RQ) for stuff categories only. The more details can be referred to Kirillov
et al. [47].

Fig. 7. Example of human pose estimation.
Source: Lqbal and Gall [59].

Table 4
Prior works on CNN-based pose estimation.

Types of Approach Descriptions Authors

Single-based Achievement of average precision of 0.649 on COCO database Papandreou et al. [75]
Achievement of AP50 at 0.859 on COCO database He et al. [33]
Achievement of average precision at 73.0 on COCO test-dev database Chen et al. [7]
Achievement of mAP of 73.7 on COCO test dev split Xiao et al. [92]

Multiple-based Achievement of AP50a of 0.834 on COCO database Wei et al. [89]
Achievement of AP50 of 84.9 on COCO database Cao et al. [5]
Achievement of 92.0% PCKh scoreb at threshold of 0.5 Yang et al. [94]

a Note: AP50 (AP at OKS=0.50). Object Keypoint Similarity (OKS) is the standard evaluation metric. The more details can be seen: http://cocodataset.
org/#keypoints-eval.

b Note: PCKh (head-normalized probability of correct keypoint) score is a standard metric. The more details can be referred to Andriluka et al. [1].

W. Fang, et al. Advanced Engineering Informatics 43 (2020) 100980

6

http://cocodataset.org/%23panoptic-leaderboard
http://cocodataset.org/%23keypoints-eval
http://cocodataset.org/%23keypoints-eval


Deep learning-based computer vision approaches therefore have the
potential to accurately detect unsafe behaviour [73,53,16–19]. By re-
viewing studies that have utilised computer vision and deep learning to
monitor safety behaviour, we identify the application areas and chal-
lenges of implementing these technologies so that future research di-
rections can be propagated (Fig. 3).

4.1. Failure of PPE

Health and safety teams on site need to ensure that people are
wearing their PPE such as: (1) hardhat; (2) high-visibility vest; (3)
safety harness when working at height; and (4) appropriate footwear;
(5) gloves; and (6) safety glasses. Yet, research has repeatedly shown
that a significant amount of injuries that occur in construction mate-
rialise as a result of people simply not wearing their PPE [42,53]. In
addressing this pervasive issue, a number of algorithms have been de-
veloped and used to recognise a person who is not wearing their PPE,
which have been based on the following methods: (1) handcrafted
features; and (2) deep leaning.

To extract features (e.g., shapes), from images or video descriptors
such as Histogram of Oriented Gradients (HOG) [10], Histogram of
Optical Flow (HoF) [88], and Bag-of-Features (BoF) [58] have all been
employed. Hand-crafted feature-based methods usually employ a three-
stage procedure, consisting of: (1) extraction; (2) representation; and
(3) classification.

Research has been able to identify when people are not wearing
their hard hat, high visibility vest and safety harness [73,64,16,18]. In
the case of Park et al.’s [73] research, for example, people and hardhats
are first detected by using a HOG descriptor. Then, their geometric and
spatial relationships are matched (Fig. 9). Despite its success in being
able to recognise when a person is not wearing their hard hat, this
approach is dependent on manually designed features descriptors,
which involves determining the right trade-off between detection ac-
curacy and computational efficiency (i.e., speed). For example, one of
the most powerful and robust feature detection algorithms is Scale In-
variant features Transform (SIFT) [66,6].

Fang et al. [16], for example, developed a hybrid learning approach
that integrated a Faster R-CNN and a deep CNN to detect people not
wearing their safety harness while working at heights. Here the Faster
R-CNN was used to detect people from images. Then, a new CNN model
was used to classify those people who are and those that are not
wearing their harness. This research, however, has limitations as it was
based on a selected number of activities working at heights and the
dataset was relatively modest in size. Similarly, Fang et al. [17] applied
a Faster R-CNN to detect the people wearing their hard hats using a
training database with approximately a 100 k images under varying
conditions situations (e.g. different weather, different illumination) to
validate its accuracy and reliability. While headway is being made to
detect individuals that are not wearing their PPE, there has been to the

authors knowledge no research that been able to identify when it is
being incorrectly used.

4.2. Exposure to hazards area

Two types of hazards can generally found on construction sites
[91,74,22]: (1) Static hazards, which form part of the design of a
building, include temporary works, storage of the hazardous sub-
stances, site traffic control, and physical hazards such as an opening on
a floor for services or stairwell; and (2) Dynamic hazards, which are the
spatial-temporal movement or resources, such people and heavy
equipment, and cranes with their being transported over working areas.

Research has tended to focus on how computer vision can be used
prevent people from entering working areas while heavy equipment is
being used [44–46]. For example, Kim et al. [44] integrated computer
vision with a fuzzy inference method to monitor and assess a person’s
safety while working in the vicinity of heavy plant (Fig. 10). In this
instance, crowdedness and proximity to the plant were used to assess
safety levels. Despite the systems potential, Kim et al. [44] acknowl-
edged that several improvements were required if their approach was to
be applied during construction to enable real-time detection, which
included: (1) consideration of the plant’s operational status; and (2)
achieving a greater level accuracy when dealing with high dimensional
image data where there is a presence of clutter, numerous resources
(e.g. people, and plant), varying poses and differing scales.

Similarly, Kim et al. [45] developed a hazard avoidance system by
combining computer vision with augmented reality to proactively in-
form individuals of likely dangers (e.g., hazard orientation, distance,
and safety level). However, occlusions had an adverse effect on the
performance of the object detection.

Building on this earlier works, Fang et al. [21] utilised a Mask R-
CNN and computer vision to determine when people entered a ha-
zardous work area. In this instance Fang et al. [21] sought to recognise
individuals that traversed structural supports from an array of images,
and reported recall and precision rates with 90% and 75%, respectively.
Akin to previous studies, occlusions hindered its accuracy, which
stymie its use in practice.

While there have been several attempts to address static hazards,
their detection remains a vexing problem (Table 4). For example, a
recurring unsafe behaviour that people commit, despite consciously
knowing that their actions are dangerous, is to enter excavations that
are unsupported. Still, research, up until this point in time, has not been
able to identify when dangerous work areas are unprotected. Further-
more, computer vision research has not been able to accommodate the
changing nature of unsafe conditions. For example, when an individual
becomes in close proximity to a crane’s working. In this case, there is a
need for digital technologies (e.g., sensors and Internet of Things) to be
combined with computer vision to extract features and deep learning
approach to improve the accuracy of detecting the individual’s

Fig. 8. Examples of deep learning-based object detection (i.e., people).
Source: Fang et al. (2018: p.148) [20].
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presence.

4.3. Failure to follow safety procedures

Previous studies identifying a person’s abnormal behaviour have
generally focused on using a skeletal and deep learning-based ap-
proaches [29–31,96,23,14,19]. Skeleton-based approaches have tended
to rely on the use of depth sensors to extract three-dimensional (3D)

models of a person to identify their unsafe actions. For example, Han
and Lee [29] utilised a depth camera to collect motion data and develop
a template to construct a 3D skeleton model. Then, Han and Lee [29]
compared the predefined template with motion data to identify ab-
normal unsafe actions. This research, however, has limitations as it was
only used in an outdoor environment where an individual was sub-
jected to a limited range of movements. Furthermore, its accuracy was
thwarted as the camera was sensitive to light.

Fig. 9. HOG description approach to detect worker not wearing safety hardhat.
Source: Park et al. [73].

(a) Overview of on-site safety monitoring system

(b) Detection Results
Fig. 10. Vision-based monitoring struck-by accidents with moving objects.
Source: Kim et al. [44].
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Using deep learning to automatically extract and learn features from
videos Ding et al. [14] integrated a CNN and long short-term memory
(LSTM) to extract spatial and temporal information of an individual’s
unsafe behaviour (e.g., abnormal climbing). Here Ding et al. [14] used
the CNN to automatically extract visual features from videos and ap-
plied an LSTM to extract sequence features (Fig. 11). Likewise, Fang
et al. [19] developed a deep learning-based framework to determine
whether an individual was working in an area where they had been
certified to do.

4.4. Challenges of deep learning

While strides have been made to identify unsafe behaviour, no fully
automatic continuous vision-based system has been developed.
Previous studies presented in this review relying on the use of CNNs
have been limited to specific-tasks, where their accuracy of detection
has been low and their ability to be generalised restricted. Thus, in
developing a new approach there is a need for it to be (1) more accu-
rate; (2) require less effort in hand-designing solution; and (3) gen-
eralisable well across related tasks and construction sites. To address
the existing limitations, computer vision in conjunction with deep
learning can enable headway to be made to automatically identify
unsafe behaviour. There are, however, challenges that inhibit the de-
velopment of a fully automatic continuous-based unsafe behaviour
identification system that include:

• Lack of training data: Deep learning models for mapping and iden-
tifying unsafe behaviour require large datasets for training. To the
best of our knowledge, there are no publicly available datasets of
unsafe behaviours that are large enough for training in construction.
Compared with public datasets in computer science (e.g., ImageNet
and COCO), datasets need to have their own characteristics that can
accommodate the nuances of construction (e.g., cluttered back-
grounds, occlusions, varying poses and the scale of objects). In light
of the lack of available datasets for training, researchers in con-
struction are required to manually create their own by tagging
images. This can be a time consuming, tedious, and expensive pro-
cess.
• Weak generalisation: As a consequence of having to create databases,
they tend to be small and thus are reliant on the use of supervised
approaches, which can impede the ability to provide general-
isations. The reasons are twofold: (1) previous studies have assumed
that training and testing database are balanced. This is a theoretical
assumption, but in reality, the dynamic nature and complexity of
construction means that we need to assume they are unbalanced to
better reflect practice; (2) underlaying machine learning models
typically use a small database for training, which can limit inter and
intra-class variability. As a result, this impedes their ability to ac-
curately recognise unsafe behaviour and enable generalisations to
different datasets [86].

• Lack of metrics for performance evaluation: For the analysis of ex-
perimental results, researchers tend to use different datasets. The
varying size of the samples contained within each dataset and the
reported evaluation metrics (e.g., precision, recall, and accuracy),
renders it difficult to compare and contrast the performance of
studies, particularly when different algorithms have been used.
Thus, there is a need for common and objective criteria that can be
used to evaluate the process of behaviour recognition.
• Inability to identify unsafe behaviour due to changing safety require-
ments. Prevailing computer vision approaches have been developed
with low levels of information utilisation and therefore require
higher levels accuracy to identify unsafe behaviour. As safety rules
are modified due to changes in legislation, computer vision ap-
proaches will accordingly need to be adapted to accommodate such
vagaries, otherwise it will become a tool that BBS approaches will
not be able to utilize.
• Inability to detect small or hidden objects. Most of well-known CNN-
based object detection approaches, such as SSD, YOLO, Faster R-
CNN, are not able to effectively identify small objects [38,65]. This
is a major problem when capturing and identifying people’s beha-
viour from a distance (Fig. 12a). In addition, individuals can be
difficult to detect due to occlusions and the limited number of
cameras that may be made available for use on site (Fig. 12b).
• Inability to extract multiple-attributes. An unsafe act may involve
breaking a series of safety rules and therefore multiple features may
need to be extracted. For example, we may need to extract hoisting
information (e.g., speed, status, and activities) to identify is the
presence of an unsafe event such as “the speed is not smooth, uni-
form, with sudden braking during hoisting”. However, it is not
currently feasible to extract a wide range of features using computer
vision.

5. Overcoming the challenges of deep learning

To address the above challenges and ensure computer vision can
effectively and accurately identify unsafe behaviour, we provide sug-
gestions for future research in the emergent area of deep learning,
which include:

• Solutions to address data problems. To help improve the detection
accuracy and generalisation of deep learning, we suggest that: (1)
unsupervised learning or semi-supervised learning can be used to
develop video streams as training data can be readily from extracted
images. This process not only addresses the issues associated with
limited training data, but also the problem of assuming that the
distribution of training and testing database are identical; (2) data
augmentation techniques can be utilised to increase training per-
formance; and (3) the transfer of learning techniques can be used to
pre-train models and fine-tune them with a small amount of
manually created data.

Fig. 11. Example of using CNN-LSTM model to identify worker unsafe behaviour.
Source: Ding et al. [14].
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• Features extraction for aiding vision-based unsafe behaviour identifica-
tion. We suggest that computer vision can be aided by digital tech-
niques (e.g., sensors, and Internet of Things). For example, gravity
acceleration sensors can be used to monitor mechanical parameters
during hoisting (e.g. its speed), and computer vision to identify the
crane’s activities. In this instance, for example, “the weight of sus-
pended objects exceeds machine’s rated load” can be monitored.
• Content-aware-based unsafe behaviour understanding. To address this
problem, we suggest that computer vision can be combined with
natural language processing (NLP) by using content-aware in-
formation to develop a reasoning model to assist with the identifi-
cation unsafe behaviour. As a result, this will enable computer vi-
sion to accommodate changes in safety regulations that may
materialise; and
• Addressing small and hidden objects. We suggest that: (1) an
Unmanned Aerial Vehicle (UAV) or 360-degress cameras can be
used to ensure that operations on site are constantly monitored and
viewed in real-time; and (2) optimised deep learning approaches can
be developed to address the problems of occlusions.

6. Directions of future research

The detection of unsafe behaviour is an innate feature of BBS. If we
can be not able to identify the unsafe behaviour, then it is unable to be
managed and changed. After accurately identifying unsafe behaviour
from videos or images, we suggest that the obtained results can be used
by the health and safety team to inform and educate individuals about
the need to perform their work safely. We therefore suggest that when
computer vision is combined with deep learning additional insights to
support BBS can come to the fore. We therefore propose, in Fig. 13, at
framework to illustrate how deep learning can computer vision can be
utilised within a BBS program as can be used to: (1) observe and record;
(2) understand; (3) learn; and (4) predict unsafe behaviour.

6.1. Observation and record

By identifying a wide range of unsafe behaviours, a health and
safety team will need to be able to identify a culprit who performs such
actions and then provide them with direct feedback about their unsafe
actions. To achieve this goal, we suggest that an individual’s identity
needs to be recognised, which can be undertaken using computer vi-
sion. As a result, an individual’s unsafe behaviour(s) can be recorded
and analysed (e.g.., frequency, types, location and time). Thus, two
solutions can be used to aid this process: (1) use of sensors to identity
the person’s identity and their location. Then, computer vision can be
used to monitor the person’s activities and derive their location from
coordinates extracted from videos. Next, the information obtained from

the sensors (e.g., identity and location) and computer vision (e.g., ac-
tivities and location) are synchronised according to the person’s co-
ordinates; and (2) the development a deep learning approach to identify
individuals from video streaming by integrating temporal and spatial
information to extract features.

6.2. Understand

Understanding why people perform unsafe acts (i.e. violations) is an
issue that health and safety team will seek to acquire knowledge about.
Such acts may arise intentionally or unintentionally. Breaking rules has
generally been associated with deviant behaviour, but there may be
instances when committing a violation may have arisen out of taking
initiative rather than negligence or malice. Furthermore, a violation
may “even be a necessary way of testing rules and the truces around
them” [4]. In making inroads to understanding a safety rule violation it
is necessary for the health and safety team to realise the way people
construct the intentions that lie behind it to ensure recidivism is miti-
gated. Computer vision can therefore be used to provide a context to
better understand why unsafe acts have been performed.

6.3. Learning

Training, an active learning approach, has been regarded as an ef-
fective way to improve the awareness and competence of employees/
subcontractors and to cultivate a positive safety culture [57]. Despite
safety training being a beneficial mechanism for engendering learning,
it has several limitations: (1) as it is unable provide people with realistic
experiences of the conditions that will be experienced while performing
their work [78]; and (2) training programs or models tend to be sepa-
rated from a person’s record of committing unsafe behaviour. This
causes it to be difficult to design a personalized training system for
individuals’ who have performed unsafe acts [60].

We suggest that computer vision can be used to address these
aforementioned limitations by introducing: (1) an interactive persona-
lized safety training recommendation system that can be developed and
designed to match an individual’s training needs. In this system, direct
feedback is reliant on the detection of unsafe behaviour using computer
vision; and (2) a Virtual Reality system to provide a sense of being on-
construction site where scenarios that have been captured from the
computer vision can be experienced in a safe environment.

6.4. Predict unsafe behaviour

Previous studies have focused on the detection of unsafe acts after
they have occurred. However, with increasing amounts of data gener-
ated from video and a greater understanding about the conditions that

(a) Varying size (b) Unseen object (partial) 
Fig. 12. Examples of varying size’s objects in construction sites.
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lead to people committing unsafe acts, we will be better position to
predict their occurrence. This will assist with hazard identification and
enable site managers and their health safety teams to proactively
manage safety performance. There remain challenges before we are
able to predict unsafe behaviour, as computer vision is not yet able to
model motion dynamics. Considering the developments with CNNs and
LSTM for different sequence prediction tasks such as speech generation,
we suggest that their combination can be extended to predicting unsafe
behaviour.

7. Conclusions

In this paper we reviewed the developments of computer vision
studies that have been used to identify unsafe behaviour from 2D
images that arises on construction sites. Then, in light of advances made
with deep learning we examined and discussed its integration with
computer vision to support BBS. This leads us to propose the integration
of computer vision and deep learning to aid the implementation of BBS
in construction through a process of: (1) observing and recording; (2)
understanding (3) learning; and (4) predicting unsafe behaviour. In
light of deep learning and computer vision our proposed future research
directions will not only improve BBS but also in multiple uses of these
applications that could support other areas of project management in
construction, such quality and real-time cost monitoring. The integra-
tion of deep learning and computer vision is an emerging area of re-
search in construction, and thus the review we present will stimulate
new lines of inquiry that will contribute improving the safety, perfor-
mance and productivity of projects.
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